Rethinking Computer Architecture

Wen-mei Hwu

University of Illinois, Urbana-Champaign

Celebrating Yale@75 September 19, 2014

What Yale and I debate about in Samos and other places.

Problem	
Algorithm	
Program	Application developers
ISA (Instruction Set Arch)	should not deal with variations in HW
Microarchitecture	
Circuits	
Electrons	

Patt and Patel, Introduction to Computer Systems: from Bits and Gates to C and Beyond

The HPS Vision - 1985

ce of ıodel. flow : the tier t ighly ıctive f the very eeded flow

uting First, e few th to essing there ıch as nents,

ith its above odel is their ine at nd I/O stalls. n fire. " The Since ıg due

des to The

FIGURE 1.

One static program (algorithm)

Many execution resource configurations

- Types of Function Units
- Number of Function Units
- I-Fetch bandwidth
- Memory Latencies

Key enablers

- Branch prediction
- Resource mapping
- Restricted data flow execution
- Sequential retirement

at one time. We define the active window as the set

data flow graph for the entire program is in the machi Patt, Hwu, Shebanow, "HPS, A New ISP instructions whose corresponding data flow nodes: Microarchitecture: Rationale and Initial Results

Some Lessons Learned

- Parallelism and communication costs motivate algorithm changes
 - Locality vs. parallelism tradeoffs in libraries
- Performance and efficiency pressure breaks abstraction
 - Java is great for abstraction portability but insufficient for performance and efficiency
 - MPI, OpenMP apps often explicitly handle hardware-centric details

Productivity and Performance

Triolet

```
ys = [sum(x * cos(r*k) for (x, k) in zip(xs, ks))
for r in par(rs)]
```

 Library functions factor out data decomposition, parallelism, and communication

128-way Speedup (16 cores × 8 nodes)	Triolet	C with MPI+OpenMP
	99	115

C with MPI+OpenMP

```
!"#$!%&"'#&()*+,!%&"'"-.
!/01'2)%%'+"345/01'26//'7689:,!;%&"'#&()*+<.
 |/01'2)%%'(=#>5/01'26//'7689:,!;%&"'"-<.
|*)#+$!"#$!(=#>?!@!%&"'"-!@@!?.
!/01'A*=+$5;+"34'B,!C,!/01'1DE,!?,!/01'26//'7689:<.
!/01'A*=+$5;+"34'>,!C,!/01'1DE,!?,!/01'26//'7689:<.
 !*\#±$!"#$!*FG#5'±"34'R!@!*4"H="T5±"34'R.|%&"'#&()*±<.
 *)#+$!"#$!&=--4-'+"34'B!@!*FG#>'+"34'B!J!%&"'#&()*+.
 !!!>+!@!"#&G$'>+.
 !!!B+!@!"#&G$'B+.
!4H+4!L
 !!!>+!@!%=HH)*5+"34'>!J!+"34)K5KH)=$<<.
!!!B+!@!%=HH)*5+"34'>!J!+"34)K5KH)=$<<.
!KH)=$!J(+'*FG#>!@!%=HH)*5*FG#>'+"34'B!J!+"34)K5KH)=$<<.
 !KH)=$!JN+'*FG#>!@!%=HH)*5*FG#>'+"34'B!J!+"34)K5KH)=$<<.
 !!"#$!#0)(>4(+!@!%&"'#&()*+PC.
  !!/01'84QG4+$!J(4Q+!@!%=HH)*5WO)(>4(+!J!R!J!+"34)K5/01'84QG4+$<<.
 !!K)(!50!@!?.!0!5!#0)(>4(+.!0TT<!L
   !!!"#$!0)(>4('"-!@!OTC.
 !!!!!/01'1+4#-5>+,!+"34'>,!/01'U96VE,!0)(>4('"-,
  !!!!!!!!!!!?,|/01'26//'7689:,|;(4Q+W#O)(>44+TOX<.
!!!!/01'1+4#-5(+!T!O)(>4("-J"FGW>'+"34'B,!*FGW>'+"34'B,!/01'U96VE,!O)(>4('"-,
 !!!!!!!!!!!!?,!/01'26//'7689:,!;(4Q+WYJ#0)(>4(+TOX<.
 !!%4%*&N5(+'*FG#>,!(+,!*FG#>'+"34'B!J!+"34)K5KH)=$<<.
!!!/01'7="$=HH5#0)(>4(+JR,!(4Q+,!/01'ZEVE[Z\Z'1]D68\<.
!!!K(445(4Q+<.
!!!/01'84*15>+,!+"34'>,!/01'U96VE,!?,
!!!!!!!!!!!!!?,!/01'26//'7689:,!/01'ZEVE[Z'1]D68\<.
!!!/01'84*I58+,!+"34'>,!/01'U96VE,!?,
!!!!!!!!!!!!?,!/01'26//'7689:,!/01'ZEVE[Z'1]D68\<.
!!!/01'84*I5(+'*FG#>,!*FG#>'+"34'B,!/01'U96VE,!?,
!!!!!!!!!!!!!?,!/01'26//'7689:,!/01'ZEVE[Z'1]D68\<.
```

Trends in System Design – 2014

- CPUs/GPUs/Accelerators or entire nodes are the new function units
 - Compute functions are the new instructions
 - Distributed execution of functions to avoid data movement
 - Accelerators in/near
 Network I/O, Disk I/O,
 DRAM
 - Some come with own
 DRAM/SRAM for bandwidth

Example - Desirable Data Transfer and Compute Behavior

- Runtime/OS should map buffers and compute functions
 - I/O buffer to any major DRAM/SRAM
- Compute functions (decompression) to any CPU/GPU/accelerators

Example -Today's Data Transfer and Compute Behavior

A Call to Action

- Redefine system architecture
 - HAS/CUDA 6.0 a step in the right direction
- Redefine ISA binary standard
 - SPIR/HSAIL/PTX with finalizers a step in the right direction
- Redesign OS/Runtime for data and compute mapping
 - UNIX/Linux overdue for redesign
- Provide performance portable domain libraries to sustain abstraction
 - High-level mechanisms such as Triolet and Tangram to fuse and tune library code into apps

Congratulations, Yale!